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Abstract 

An investigation of integrated intensity is performed for 
reflections 111 and 333 in plane-polarized Cu Ka~ 
radiation for a series of silicon dislocation single 
crystals. Integrated intensity thickness oscillations 
(Pendell~isung effect) have been found at low dis- 
location density (10-100 mm-2). It is shown that the 
oscillations attenuate with increasing dislocation den- 
sity, while their period somewhat increases. Thickness 
dependence of both extinction factor and polarization 
ratio is derived at high dislocation density (103-106 
mm-2). The present theoretical approaches based on 
the Darwin transfer equations appeared to be unsuit- 
able for treating the obtained experimental data. They 
are analysed on the basis of coherent and diffuse 
scattering components. 

1. Introduction 

The previous investigations of polarization properties 
of Bragg reflections for silicon and germanium dis- 

location crystals (Olekhnovich, Markovich & 
Olekhnovich, 1980) show that the mosaic model of 
crystals is applicable for describing diffraction in real 
crystals, provided the dislocation density is over 104 
mm -2. Besides, diffraction in mosaic crystals is found 
to be practically determined only by primary 
extinction. 

Kato (1980a,b), using equations of Takagi-Taupin 
type (Takagi, 1969), developed a statistical dynamical 
diffraction theory for crystals of any perfection degree. 
In this theory extinction is not subdivided into primary 
and secondary. 

To establish the scattering mechanism of X-rays in 
real crystals it is important to study diffraction 
properties as a function of sample thickness using the 
Laue method. That method, as is known, allows one to 
investigate the Pendell6sung effect, anomalous trans- 
mission, as well as the extinction effect. Lawrence & 
Mathieson (1977) proposed a simple method of 
single-crystal sample inclination for a controllable 
change of X-ray path length in Laue geometry. This 
procedure was used for studying integrated intensity 
thickness oscillation in perfect crystals (Somenkov, 
Shilstein, Belova & Utemisov, 1978). 
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The aim of the present work is to investigate the r 
integrated intensity of X-ray scattering by silicon- 
containing dislocations in a symmetrical Laue case 0.3 
varying their thickness in the scattering plane. A thick- 
ness oscillation effect of integrated intensity was found 

0.2 
at a small dislocation density while at a higher one, 
over 103 mm -2, extinction factor and polarization ratio 
as a function of crystal thickness were determined. 0.1 

The experimental data were analysed on the basis of r 
the existing theories of diffraction in real crystals. 0.10 

2. Experimental proeedure 

The measurements were made on silicon single-crystal 
plane-parallel wafers, cut out parallel to {110}. The 
wafer surfaces were mechanically polished and then 
etched chemically. Six samples with dislocation density 
from 10 t o  106 mm -2 were prepared from non-doped 
single crystals having a uniform dislocation distri- 
bution. The wafer thicknesses, defined with an accuracy 
of 0.5 larn, were 62-107 lain. 

Integrated intensities of 111 and 333 reflections were 
measured in Cu Ka  1 plane-polarized radiation using a 
double-crystal Bragg-Laue spectrometer. A perfect 
germanium crystal (reflection 333) served as mono- 
chromator. Incident monochromatic beam intensity 
was measured by means of an attenuating filter, which 
was the sample under study. The polarization ratio 
p,,/p,, was defined by measuring the integrated intensity 
for n and a polarizations of the incident beam. Effective 
crystal thickness t = to/COS tp was varied by tilting the 
sample around the reciprocal-lattice vector (Lawrence 
& Mathieson, 1977). Here t o is the thickness of the 
plane-parallel plate, tp is its tilt angle. The latter changed 
from 0 to +75 °. The integrated intensity values, 
measured at two similar tilt angles tp and - tp  proved to 
be close to each other and the mean values were used in 
further analyses. No correction was applied for TDS, 
since it did not exceed the error of the measured 
intensity. 

3. Results and analyses 

The measurements show that the integrated-intensity 
change with effective crystal thickness depends on 
dislocation density. Figs. 1 and 2 give the factor 
Y = P/Px as a function of the effective crystal thickness 
for the reflections 111 and 333, respectively. Here p is 
the integrated intensity measured for o polarization of 
the incident beam; Pr is the integrated intensity for 
thickness t in the kinematical limit. In calculating PK the 
structure and the Debye-Waller  factors were taken 
from Aldred & Hart 's  (1973) data. The photoelectric 
absorption coefficient was assumed to be 140 cm -~. 
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0.04 

0 0 2  260 ' 

Fig. 1. Thickness dependence of the ratio P/Px for reflection 111 at 
dislocation density (1) 30, (2) 100; (3) 7.5 x 103; (4) 4.8 x 104; 
(5) 1.3 x 105; (6) 106 mm -2. 
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Fig. 2. Thickness dependence of the ratio P/Px for reflection 333 at 
different dislocation densities (same symbols as in Fig. 1). 
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As the figures show, the integrated intensity depen- 
dence on the effective crystal thickness for samples I 
and II [having dislocation densities (N  d) of 30 and 100 
mm -2 (curves 1, 2)] differs qualitatively from that for 
samples III-VI [with N a 7.5 x l0 s , 4.8 x 104 , 
1.3 x 105 and 1 x l0 s mm -~, respectively (curves 
3-6)]. For the first group of samples integrated 
intensity oscillations are apparent when the values of 
effective crystal thickness are small. The oscillations 
attenuate both with increasing effective crystal thick- 
ness and with dislocation density. The absolute value of 
the integrated intensity in this range of crystal thickness 
increases with the dislocation density. 

Effective crystal thickness lying beyond the range of 
the Pendell6sung fringes, the factor Y increases 
smoothly due to the anomalous transmission effect. 
Intersection of the curves 1 and 2 in Fig. 2 reveals that 
the rate at which the Y factor increases slows down 
with the dislocation density. 

Neither oscillations nor an anomalous transmission 
effect occur for samples III-VI. In this case extinction 
takes place. It is of interest that the extinction factor as 
a function of effective crystal thickness tends to a 
constant. The higher the dislocation density is, the 
smaller should be the effective thickness for the 
extinction factor to reach the limit value. 

The polarization ratio for all studied samples (Fig. 3) 
within the experimental error does not depend on the 
effective crystal thickness. It exceeds unity for the 
sample 111 with the dislocation density 7.5 x l0 s 
mm -2 (curve 1), i.e. p~ > po. As the dislocation density 
increases the polarization ratio goes down, approaching 
the kinematical limit (cos 2 20n). 

First of all let us analyse the experimental data for 
samples I and II (cases of low dislocation density) and 
then for the III-VI samples (cases of high dislocation 
density). 

EFFECT OF DISLOCATION DENSITY ON INTEGRATED INTENSITY 

p =  RCg + RCg a + R ~ + R'~, (1) 

where 

c ca p r E  exp[--2(1 - E 2) rA/A] Rg + R 8 = 2-----~ 

x f J"o(X)dx + Io(2kAE) - 1 (2) 
0 

Cases o f  low dislocation density 

According to Kato's (1980b) theory the integrated 
intensity for a real crystal in the symmetrical Laue case 
is given by 

pJpo 
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Fig. 3. Polarization ratio for reflection 111 vs crystal thickness at 
various dislocation densities: (I) 7.5 x 10a; (2) 4.8 x 104; (3) 
1.3 x 105; (4) 106 mm -2. 

is the purely coherent component, Rig and R~' are the 
incoherent and mixed components [equations (29b) and 
(36b) of Kato (1980b)], A = t/AT, A = v/ro21F'lC, ), = 
cos On, k = F " / F ' ,  E is a static Debye-Waller factor, r 
is the correlation length. 

For crystals with low dislocation density, as will be 
seen below, the condition of 'nearly perfect crystal' is 
fulfilled (Kato, 1980b). Therefore, for calculating R~ a 
we used the exact expression (Kato, 1968), where the 
structure factor is corrected by the static Debye-  
Waller factor E. 

The incoherent and the mixed components in (1) are 
determined by the static Debye-Waller factor E and 
the effective correlation length re. The latter, taking into 
account Kato's (1980a, p. 769) remark, is defined by 

r e = (1 - E 2) z + bEA, 

where b is a numerical factor of order unity. Kato in his 
calculations takes b = 1. While comparing our 
experiment with the theory we varied this factor. 

The reduced value of the integrated intensity was 
defined to compare the experimental data with 
theoretical ones 

R~exp = 2 A p / p x -  [ Io(2kAE)-  1] 

× E exp[--2(1 - E 2 ) z A / A ] ,  (3) 

Rrt h = (2A/pr)  (RCg + R~ + R~). (4) 

The factor E was determined directly from the period 
of the integrated intensity oscillations. The estimations 
show that for the reflection 333 E = 0.99 at N a = 30 
mm -2 (sample I), and E = 0.97 at N a = 100 mm -2 
(sample II). The increase in oscillation period for 
reflection 111 of sample II is less than 1%. 

The parameter z was evaluated by the ratio of the 
first oscillation amplitude for the real crystal to the 
amplitude of the corresponding oscillation for the 
perfect one. For example, for reflection 333 (sample II) 
r = 0.204A. Fig. 4 shows that the experimental value of 
R r (curve 1) is much larger than the theoretical one 
(curve 2) over all the range of the effective crystal 
thickness variation. At the same time oscillations of 
Rrexp damp very quickly compared to R r t  h. The value 
of Rrt h depends weakly on the factor b in the expression 
for %. For example, Rrt h increases only by about 1.5% 
with the factor varying from 1 to 2. 

The R~exp and Rrt h behaviour for reflection 111 is 
similar to that for reflection 333. 
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Let us analyse the experimental data from the point 
of view of coherent and diffuse scattering parts 
(Dederichs, 1970; Lider, Chukhovskii & Roganskii, 
1977). The latter component in our case is the 
scattering due to the fields of dislocation lattice deform- 
ation. It makes a contribution mainly to the Bragg 
reflection regions (Krivoglaz, 1967) and manifests itself 
in rocking-curve broadening and some intensity increase 
on their tails. One can assume that the diffuse 
scattering causes coherent scattering absorption as in 
the case for other statistical distributed defects 
(Dederichs, 1970). Besides, in the region of the Bragg 
reflection the diffuse scattering attenuates due to 
extinction effect. Then the integrated intensity could be 
determined as 

P=Px(1-E2)Ya+PKE2---A exp ( - - ~ )  

["" ] x f 3"o(x)dx + I o ( 2 k A E ) -  1 , (5) 
0 

where #a is the absorption coefficient because of diffuse 
scattering, Ya is the integrated extinction factor of the 
diffuse scattering. 

The coefficient ga was found in the same way as the 
parameter r in (2). It appeared to be equal to about 8.3 
and 22.1 cm -1 for reflection 333 of samples I and II, 
respectively. 

Subtracting 

(Px E/2A ) exp (--#a t/ y ) I0(2kAE) 

from the experimental value of p and smoothing the 
oscillations, we define the reduced intensity of the 
diffuse scattering (Fig. 5, curve 2). Its calculated value 
is given by 

Rra = 2A(1 -- E 2) Ya" (6) 

R, 

1 

3 

2 

1 

0 ' 10 ' 210 ' 3'0 A 

Fig. 4. The reduced intensity of reflection 333 vs parameter A: (1) 
experimental; (2) calculated from equation (4) (b = 1). 

Fig. 5 gives for comparison the thickness dependence 
Rrd, calculated in the kinematical limit [Ya = 1 in (6)] 
(dashed line 1) and also the sum of the reduced values 
for incoherent and mixed components contained in 
equation (1) (curve 3). To calculate the latter, the 
parameter r was found from the relation 2(1 - E 2) r/A 
= #aA. Comparison of the given data in Fig. 5 suggests 
that the found value of R,d (curve 2) can be explained 
on the basis of (6) taking into account extinction 
factors of the diffuse scattering. 

Consequently, using the approach based on coherent 
and diffuse scattering components, one can treat more 
correctly the observed thickness dependence of the 
integrated intensity for crystals with low dislocation 
density. However, it should be pointed out that (5) as 
well as (2) cannot quantitatively account for the effect 
of quick damping of the integrated intensity thickness 
oscillations for dislocation crystals. This effect is, 
apparently, due to an additional phase difference for 
the coherent waves in such crystals. 

Cases of high dislocation density 
As dynamical effects do  not appear for the crystals 

having high dislocation density, the integrated intensity 
from Kato's (1980b) theory is determined only by the 
incoherent scattering component. The extinction factor 
in this case for a polarization can be written as 

1 
Y = - - [ 1  - exp(-at)] ,  (7) 

at 

where 

a = 4r/A 2 7. 

Rd 

/ / 
/ / 

ii1//--1 / 

iii I J 2  
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/ / ./--3 
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Fig. 5. The reduced diffuse component intensity: (1) calculated 
from the kinematical theory; (2) experimental; (3) calculation of 
R~ + R~ n (equation 1). 
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To compare with the experimental data we trans- 
form (7) to 

ln[ d( Yt)/dt] = -at. (8) 

This is the equation of a straight line, passing through 
the origin (Fig. 6, dashed lines). 

At a,, = C 2 a o, the polarization ratio is given by 

1 - exp ( - C  2 ao t) 
P,,/Po = . (9) 

1 - -  exp (--a o t) 
Fig. 6 demonstrates the dependence of-ln[d(Yt)/dt] 

on the crystal thickness from the experimental data for 
the reflections 111 and 333 (for reflection 111 of 
sample III d(Yt)/dt < 0). 

It is seen that the thickness dependence of 
-ln[d(Yt)/dt], following from (8), does not agree even 
qualitatively with the experimental one. 

The same thing is inherent in the thickness depen- 
dence of the polarization ratio (Fig. 7). According to 
(9) the polarization ratio should change from cos 2 20 n 
(at t-* 0) to 1 (curve 3) for any degree of crystal 
imperfection. The experiment indicates that practically 
it does not depend on crystal thickness and at a certain 
dislocation density it may exceed unity. This suggests 
that Kato's theory is not suitable for describing 
diffraction in real crystals. 

Let us turn to Zachariasen's (1967) theory of the 
secondary extinction (1967). For the symmetrical Laue 
case the transfer equations have the exact solution, 

_= 
I 
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Fig. 6. -ln[d(Yt)/dtl  versus crystal thickness at dislocation density 
(1) 106; (2) 4.8 x 104; (3) 7.5 x 103 mm -2. 

from which the extinction factor can be found for a 
given mosaic type. 

For the Gaussian distribution of the blocks (Becker 
& Coppens, 1974) the extinction factor can be defined 
by 

n~l (-1)n+l ( 2a°QYPt) n-1. (10) 
Y =  YP = v/n"n! cos 0n 

At 2ao QYpt/cos 0 s < 1 the series (10) can be approxi- 
mated by 

Y= Y, exp(-aQYpt). (11) 

The experimental data (Fig. 8) show the presence of 
a region in which the crystal thickness change of In Y is 
given by a straight line as follows from (11). The 
straight-line intersection with the Y axis gives the value 
of the primary extinction factor. Its tilt-angle tangent 
defines the additional absorption coefficient of the 
diffracted radiation. 

It is seen from Fig. 8 that an increase of the 
dislocation density leads to a decrease in the tilt angle 
of the linear part In Y for both reflections. As regards 
the secondary extinction (11), this means a decrease in 
the value aQ Yp. The latter should lead to the elongation 
of the thickness region, where In Y would change 
linearly. In reality it is quite the reverse, i.e. the region 
of linearly changing In Y becomes shorter. The same 
discrepancy occurs when comparing the data for 
reflections 1 1 1  and 333 of the same sample. For 
example, in the case when N a = 7.5 x 103 mm -2 the 

p,,/po 2 

1"0 i 
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0.95 
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(b) 
Fig. 7. Thickness dependence of the polarization ratio at dis- 

location density (a) 4.8 x 104 and (b) 7.5 x 103 mm -2. (1) 
Experimental; (2)calculated from equation (12); (3)calculated 
from equation (9). 
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region of linear change in In Y extends to 250 pm for 
reflection 111 and is below 200 ~tm for reflection 333. 
This suggests that the additional absorption coefficient 
of the diffracted radiation is not associated with the 
secondary extinction effect. 

The second confirmation of this suggestion is the 
thickness dependence of the polarization ratio. If the 
secondary extinction effect took place, the polarization 
ratio in the linearly changing region of In Y would be 
determined by the relation 

p,,/po = C 2 YT, exp[aQ,, Yp(1 - C 2 Y~,/Y~,) t]. (12) 
r; 

The thickness dependence of P,,/Po from (12) does not 
agree with the experimental one (Fig. 7). At N a = 
4.8 x 10 4 mm -2 the calculated value ofp~/po increases 
with thickness and is over the experimental one 
throughout the range. It is the opposite at N a = 
7.5 × 10 a mm -2, i.e. the calculated polarization ratio 
decreases with the crystal thickness. The experiment 
shows that p, /po  is not a factor of thickness. 

Finally, the secondary extinction approach cannot 
explain why the measured extinction factor reaches a 
constant at some value of crystal thickness. 

Thus, the present analysis culminates in the con- 
clusion that the secondary extinction effect is not of 
major importance in X-ray diffraction in real crystals. 
This coincides with the conclusion from the investi- 
gations of the polarization coefficient within the Bragg 
reflection range (Olekhnovich & Markovich, 1978; 
Olekhnovich et al., 1980). 

In considering diffraction in low-dislocation-density 
crystals we proceeded from assumptions of the coher- 
ent and diffuse components, the absorption of the 

--1 o 

--2 '~' N N "",~ o o o 

- 3 -  ~ o  o 

I I I 
0 100 200 300 t(Bm) 

Fig. 8. In Y versus  crystal thickness at dislocation density (1) 
7.5 x 10 3 and (2) 4.8 x 10 4 mm -2. 

coherent component being due to the diffuse one. Such 
an approach could probably be used in diffraction 
analysis for high-dislocation-density crystals. It is 
justified by a large primary extinction effect, which is 
connected with coherent scattering. From that 
approach one can assume that the extinction factor 
decreasing with crystal thickness is due to coherent- 
wave absorption through the diffuse component. At the 
same time one should remember that coherent waves 
are limited by coherent regions in strongly distorted 
crystals. Then, disregarding the diffuse component, the 
extinction factor can be written as 

Y =  Yp exp(--lUat/7), (13) 

where Yp is the primary extinction factor for an average 
coherent block, #a is an absorption coefficient due to 
the diffuse scattering. This relation is written assuming 
that the wave coherence of separate blocks does not 
change with crystal thickness. 

Let us consider the variation of #a with the 
dislocation density. The value of gd is defined from the 
tilt-angle tangent of the linearly changing part of In Y 
(Fig. 8). Table 1 presents the #d values found for the 
reflections 111 and 333 of all studied samples, 
including the samples with low dislocation density. 

It is seen that the change of absorption coefficient 
with the dislocation density has a general regularity in 
the whole series of samples. #a is maximum for both 
reflections at N d = 7.5 x 103 mm -2. An increase or 
decrease in the dislocation density makes #a fall (Table 
1). This can be explained if one bears in mind that #d is 
derived from two factors related to coherent and 
diffuse scattering components, respectively. The value 
Of#d will be extremum at some dislocation density since 
the first factor decreases and the second one increases 
with the dislocation density. 

From this approach one can account for the 
observed polarization-ratio dependence on crystal 
thickness. The absence of a distinct change of P,,/Po 
with crystal thickness is possible provided Pd is the 
same for the it and a polarizations. This condition can 
really exist, since the given coherent component factor 
is smaller for n than for a polarization, while the diffuse 
component factor in contrast is larger for lr polarization 
because of the diffuse scattering extinction (5). 

Appropriate investigations are needed to make a 
detailed analysis of these results. 

Table 

Sample 
N a (mm -2) 

#a(cm-l) { 111 

333 

1. Absorpt ion coefficient #a at different 
dislocation densities N d 

I II III IV V VI 
30 100 7.5x 103 4.8x104 1.3x 105 lx  10 ~ 

- -  5 75 63 35 22 

8.3 22.1 32.8 25.7 12 12 
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Table 2. Primary extinction factor, polarization ratio 
and average block size at various dislocation 

densities 

N a (mm -2) 7.5 x 10 a 4.8 x 104 1.3 x l0 s 106 
Yp 0.259 0.370 0.383 0.55 
D (/zm) 14.1 11.9 11.7 9.3 

" l(tgn/pa)exp 1-02 0-98 0-96 0-89 
~ [(P,~/P,,)¢a~¢ 1.02 0.97 0.93 0.88 

Ypexp 0.69 0.77 0.79 0.89 
333 "Yp¢alc 0"67 0"74 0"75 0"87 

The primary extinction factor Yp (13) of the average 
coherent block can be estimated to a first approxi- 
mation from the expression obtained for a finite perfect 
crystal (Olekhnovich et al., 1980): 

Yp = exp(--r2/4) {1 + 0.147 exp[ -0 .45( rc -  4.2)21}, 

(14) 

where r e = D/A, D is an effective dimension of the 
coherent block. 

The effect of anomalous transmission on the primary 
extinction factor for the size of blocks under study is 
negligible (Olekhnovich, 1979) and has not been taken 
into account. The D found from (14) has the same 
order of magnitude as an average distance between the 
dislocations. Using the effective block dimensions, 
found from Yp for reflection 111, we estimated the 
polarization ratio for this reflection: 

p,,/p,,- C2 y~,/Y~,, (15) 

and also the factor Yp for reflection 333 (Table 2). 
in the calculations we took into account v~ = Cz~', 

(zcA)m = (vcA)333. Table 2 shows that the found p,Jp,, 
values agree with the experimental ones within experi- 
mental error. The estimated factor Yp for reflection 333 
is somewhat below the experimental one. This may be 
because the diffuse scattering contribution is not taken 
into account. Thus the given comparison shows that 
(14) can be used for the primary extinction correction 
in mosaic crystals. 

4. Conclusion 

Dislocation crystals are divided into two groups 
according to the character of the thickness dependence 
of the integrated intensity. For the first group of 

crystals (dislocation density below 103 mm -2) effects of 
the integrated intensity thickness oscillation and the 
anomalous transmission are evident. The ratio of 
oscillation period for a perfect crystal to that of a 
dislocation one defines directly the Debye-Waller static 
factor E -- e -L. This factor decreases with the 
dislocation density and reflection order, though its 
value differs little from 1. For example, for reflection 
333 it constitutes 0.97 even at a dislocation density of 
100 mm -2. A similar result for germanium (reflection 
220) was obtained by Datsenko (1977) from the data 
on anomalous transmission. 

For the second group of crystals (dislocation density 
beyond 10 a mm -2) the extinction effect is observed. 
Analysis of the extinction-factor thickness dependence 
and polarization ratio for crystals having various 
dislocation densities shows inapplicability of diffraction 
theories, based on the Darwin transfer equations. 

The obtained diffraction data can be treated assum- 
ing that diffracted radiation consists of coherent and 
diffuse components, the coherent component being 
absorbed due to the diffuse scattering. 
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